

On Scene Accident Investigation – What You Need to Document

Joey Parker, Ph.D., P.E. Jeremy Hunter, MSME, P.E.

> 3 Axis Engineering, LLC 5929 Knight Ave. Tuscaloosa, AL 35405 Ph: 205-758-4488 Fax: 205-758-4489

A little bit about us

- Joey Parker (joey@3axisllc.com)
 - Taught in Department of Mechanical Engineering (dynamics, instrumentation) at The University of Alabama for 25 years
 - Research work involved interfacing electrical and mechanical devices to computers
 - Accident reconstruction work (99%+ civil litigation) since 2002
- Jeremy Hunter (jeremy@3axisllc.com)
 - Bachelor's and Master's in Mechanical Engineering from The University of Alabama
 - Involved in 600+ accident investigations since 2004
 - Developed overhead camera system

A little bit about 3Axis Engineering

- Doughty & Powers Engineering is now 3Axis Engineering
- We provide professional, data-driven, mechanical engineering solutions to motor vehicle accident <u>reconstruction</u> (i.e., "what happened") including:
 - passenger vehicles,
 - commercial vehicles, such as tractor-trailers and buses,
 - motorcycle, pedestrian and other accidents.

Brief Overview

- Event Data Recorders
 - Passenger vehicles
 - Commercial vehicles
- Accident Photography
 - Scene (on-roadway and off-roadway)
 - Vehicles
- Accident Scene Measurement

Note – Entire presentation available on our website: www.3axisllc.com/resources

EDR - Event Data Recorder

- "Black boxes" that store accident data on many passenger and commercial vehicles best referred to as EDRs
- Typical questions:
 - What gets stored?
 - What vehicles have EDRs?
 - Can the data disappear or get erased?
- Answer: It depends!

Passenger Vehicle EDR

- Passenger vehicle event data found in the airbag control module (ACM), or powertrain control module (PCM) for Fords
 - GM (from 1994)

 - Chrysler (from 2005)
 Nissan (from 2012)
 - Toyota (from 2002) some Saab &
- Honda (from 2012)
 - Ford (from 2001) Mazda (from 2011)
- Available data depends on engrie manufacturer. model, year, etc.
- 3Axis Engineering can help with all phases of passenger vehicle EDR downloads - call us!

ACM access through DLC

Damaged PCM on firewall

ACM under passenger seat

ACM under center dash

Passenger Vehicle EDR

- Recording triggered by collision
 - Many store vehicle speed, braking, and other information for 2 to 5 seconds before a collision
 - Ford PCMs also have a "last stop" record
- Deployment of airbags (or belt tensioners)
 - Data usually locked and won't get overwritten
- Non-Deployments
 - Accident data may exist, but not usually locked and may get overwritten if vehicle put back into service

Commercial Vehicle EDR

- Commercial vehicle event data typically stored in the diesel's engine / electronic control module (ECM)
 - Detroit Diesel
 - Cummins
 - Mack
 - Caterpillar
 - International
 - Volvo
- Available data depends on engine manufacturer, model, year, etc.

Most potential for accident-related information to be stored

Commercial Vehicle EDR

- Recording triggered by "hard" braking

 vehicle slows by 7 to 10 mph in one second
- "Last stop" recorded by some Detroit Diesel and Mack engines
- Data volatility
 - Commercial vehicle EDR data is <u>not locked</u> and can be overwritten if the vehicle is driven or repaired
- 3Axis Engineering can help with all phases of commercial vehicle EDR downloads call us!

Access through ECMspecific connector

Important EDR Tips

- Reduce chances of accidentally erasing data
 - Keep keys in a separate secure location after accident (especially Fords with PCM data)
 - Wrecker drivers will use your key to move the vehicle and can erase valuable data!
 - Turn vehicles off with the key if possible after an accident
 - Some commercial vehicle EDRs use the key-off to trigger writing of data to non-volatile memory

Accident Photography

Photos serve two important functions

- 1. Provide a permanent, accurate, and unbiased record of something specifically observed at accident scene
 - If there is not a fatality, you may be the only one documenting the evidence.
- 2. Capture evidence (mark on road or damage to a vehicle) that may later reveal significant details that were not observed at time photo was made

from *The Traffic-Accident Investigation Manual*, J Stannard Baker and Lynn B. Fricke, Northwestern University Traffic Institute, 9th Ed., 1986.

Photographs – "Dos"

- What to do
 - Learn how to use your camera
 - automatic settings work well for most shots
 - good to know the Macro mode for close-ups
 - Start wide, end narrow
 - details need context
 - Include fixed landmarks whenever possible
 - trees, utility poles, signs, manhole covers, roadway striping, etc.

Photographs – "Don'ts"

- What not to do
 - Stand in one place and shoot approximately the same photo 5 to 20 times
 - Set camera on lowest resolution to get more photos on the memory card
 - Forget to copy photographs from camera's memory card to more permanent location
 - Print photos (or save to PDF), then delete the original digital files

Basic At-Scene Photos

- Final positions of vehicles and bodies
- Evidence on the road surface
 - tire marks, scrapes, gouges, etc.
- Evidence off the road surface
 - ruts, furrows, damage to trees, etc.
- Recognizable landmarks that help identify location on the road

- utility poles, road signs, mailboxes, etc.

View that drivers may have had approaching accident area

At-Scene Photos – View A

At-Scene Photos – View A

At-Scene Photos – View B

At-Scene Photos – View B

Shows car position well, but car obscures truck and skidmarks too far away

At-Scene Photos – View C

At-Scene Photos – View C

At-Scene Photos – View D

At-Scene Photos – View D

Shows everything of interest, but too far away

At-Scene Photos – View E

At-Scene Photos – View E

At-Scene Photos – View F

At-Scene Photos – View F

Keys to Good Scene Photographs

- Make photographs soon of things that will change
 - Locate vehicle rest positions quickly if they need to be moved for traffic control
 - Some tire marks (particularly the faint marks left with anti-lock brakes) may disappear quickly with traffic
 - Debris will be swept up and moved or discarded

from *The Traffic-Accident Investigation Manual*, J Stannard Baker and Lynn B. Fricke, Northwestern University Traffic Institute, 9th Ed., 1986.

- Start with camera view including a landmark <u>fixed</u> object
- Approach area of interest with smaller field of view (but more detail)
- End with area of interest in detail near center of photo

- Tire marks
 - A ruler or tape across a braking tire mark can help identify which tire left the mark
 - May also rule out some tire marks as not related to the particular accident

- Tire marks
 - Yaw mark striations should be welldocumented
 - Yaw marks indicate that the tires are not pointed in the direction the vehicle is moving

- Long tire marks
 - First photographs should be taken <u>before tire</u> <u>mark starts</u>
 - Usually best to follow tire mark in the direction it was created
 - Photographs should overlap if taken in a series
 - Get additional detail if there are any irregularities or changes in appearance of tire mark

- Scrapes and Gouges
 - Need wide view photos (with landmarks) initially to clearly locate scrape or gouge
 - Gradually get closer with one or more medium range views
 - Full detail shot in center of photo
 - Identifying individual scrapes and gouges with chalk or paint can be useful

If you had

Keys to Good Scene Photographs

- Photographs can be taken later
 - Off-road vehicle rest positions
 - General scene
 - View obstructions
 - Damage to vehicles
 - Positions of signs
- In general, take photos both before and after putting down any paint

from The Traffic-Accident Investigation Manual, J Stannard Baker and Lynn B. Fricke, Northwestern Un Veis Rygine file Postitute, 9th Ed., 1986.

- Ruts and Furrows
 - Need wide view photos (with landmarks) initially to clearly locate start
 - Usually best to follow in the direction created
 - Surveying flags may be helpful to clearly locate ruts in grass
 - Matted grass is hard to photograph. Take shots from more than one angle to produce different glare on the blades.

Low Sun Issues

- With low sun, keep sun to your back
 - May also have to walk in direction opposite vehicle travel
 - Still go in both directions for completeness

Other Tips

- Show the horizon but don't fill up half of the pictures with sky
- It's hard to tell depth in a photograph. If depth is important, take a photo, move a few feet, take another photograph
- Standing in the bed of a pickup can give a different perspective and allow more data to be shown clearly in a photograph

Ground Level Photograph

JANS LIGINEETING @ 2012

Elevated Camera

Elevated Camera

Photographing Vehicles

- Start with 8-Front-Control the "basic 8"
- Front, side, and rear shots should be perpendicular to vehicle if possible

Photographing Vehicles

- Details of damage
 - Use same "start wide, end narrow" approach
- Items of typical interest
 - Imprints of one vehicle on another
 - Tire or other abrasion marks
 - Damage to head-, tail- or marker-lights
 - Damage to wheels or tires
 - Document if tires "pinned" against vehicle in collision

3AXIS Engineering © 2012

Accident Scene Measurements

- Distance measurements can be invaluable
 Not always available from photographs alone
- In order of decreasing accuracy:
 - Total station / surveying equipment
 - Measuring tapes or wheels
 - Paces

Measurement by Paces

- Triangulation is best technique
 - measurements from 3 fixed objects in approximately 120° increments
- Bisection with measurements from 2 fixed objects about 90^o apart also works
- Calibrate pace by measuring a few road features that are likely to remain constant
 - record these along with pace measurements of accident features

Triangulation

Measurement by Tape or Wheel

- Triangulation is best technique
 - measurements in ideally 120° increments from 3 fixed objects
- Rectangular grid approach also works well
 - Use a known straight line (white or yellow fog lines) as one of the axes
 - Other measurements taken perpendicular (at right angle) to the straight line axis
 - Measure a fixed object such as a utility pole or end of a line

А	(70,1)	tire mark start, right side
В	(70,8)	tire mark start, left side
С	(193,7)	tire mark end, right side
D	(193,14)	tire mark end, left side
E	(204,15)	right rear wheel position
F	(232,16)	right front wheel position
G	(204,22)	left front wheel position
Н	(232,23)	left front wheel position

-Y

+ Y

A (70,1) tire mark sta	rt, right side
---------	-----------------	----------------

- B (70,8) tire mark start, left side
- C (193,7) tire mark end, right side
- D (193,14) tire mark end, left side
- E (204,15) right rear wheel position
- F (232,16) right front wheel position
- G (204,22) left front wheel position
- H (232,23) left front wheel position
 - (155,-15)成房在ngineering © 2012

Ε

W

S

- A (70,1) tire mark start, right side
- B (70,8) tire mark start, left side
- C (193,7) tire mark end, right side
- D (193,14) tire mark end, left side
- E (204,15) right rear wheel position
- F (232,16) right front wheel position
- G (204,22) left front wheel position
- H (232,23) left front wheel position
 - (155,-15)成房在ngineering © 2012

Thank You!

Any Questions?

Call us if we can help: 205-752-4488